Резонансное поведение электропроводности водного раствора аминокислот в слабых коллинеарных постоянном и переменном магнитных полях

В.В. Новиков

Учреждение Российской академии наук Институт биофизики клетки РАН, г. Пущино

Частоты ионов, соответствующие условию циклотронного резонанса (ICR, A. Liboff)

Общая характеристика исследований

Цель работы. Основной целью настоящей работы явилось обнаружение и детальное исследование эффектов действия слабых магнитных полей (МП) на физико-химические системы, определение наиболее активных параметров этих полей, их пороговых значений, частотно-амплитудных диапазонов активности, а также поиск и исследование мишеней действия слабых МП и механизмов изменения этих мишеней.

Задачи исследования.

1. Провести выбор объектов и моделей исследования, чувствительных к действию слабых МП.

2. Найти параметры слабых комбинированных постоянного и переменного МП, обладающие активностью.

3. Развить подход к анализу механизмов действия слабых МП, ориентированный на исследование свойств водных растворов различных биологически активных молекул, например, аминокислот, белков и пептидов при воздействии на них очень слабых МП с переменной низкочастотной компонентой порядка десятков нТл и постоянного МП, сравнимого по величине с геомагнитным полем.

Схема экспериментальной установки

 1 – кювета с раствором, 2 – электроды, 3 – катушка, 4 – магнитный экран из пермаллоя, 5 – источник напряжения, 6 – генератор синусных волн, 7 – измерительный блок: стабилизатор напряжения, измеритель, записывающее устройство Ток ионов в растворе глутаминовой кислоты как функция частоты переменного магнитного поля для различных значений постоянного магнитного поля

По оси х – частота переменного магнитного поля (Гц), по оси у – поток ионов (нА). Амплитуда переменного магнитного поля равна 0,025 мкТл; постоянное магнитное поле а: Во = 20 мкТл; б: Во = 30 мкТл; в: Во = 40 мкТл Ток ионов в растворе глутаминовой кислоты как функция частоты переменного магнитного поля для различных значений амплитуды переменного магнитного поля

По оси *х* – частота переменного магнитного поля (Гц), по оси *у* – поток ионов (нА). Постоянное магнитное поле Во = 40 мкТл; амплитуда переменного магнитного поля а: 0,01 мкТл; б: 0,02 мкТл; в: 0,04 мкТл; г: 0,08 мкТл Зависимость тока ионов в растворе глутаминовой кислоты от частоты переменного поля и рН

Амплитуда переменного поля (В1) 0,025 мкТл. Постоянное магнитное поле (В0) 40 мкТл; 1: Glu pacтвор pH 2.85; 2: Glu pacтвор pH 3.2; 3: вода pH 2.85.

Зависимость тока ионов в растворе аспарагина от частоты переменного поля

Пошаговое сканирование (0,01 Гц в минуту). Во = 30,3 мкТл; В1 = 0,04 мкТл

Зависимость реакции ионного тока через раствор аспарагина в условиях ICR от температуры

Условия ICR: B0 = 30,3 мкТл; B1 = 0,04 мкТл (f 3,5 Гц) a: 18°C; б: 27°C; в: 36°C

Представление результатов:

- 1. В.В. Новиков, М.Н. Жадин. Комбинированное действие слабых постоянного и переменного низкочастотного магнитных полей на ионные токи в водных растворах аминокислот // Биофизика. 1994.
 Т.39, В.1. С.45-49.
- 2. В.В. Новиков. Кооперативный эффект резонансного усиления ионного тока в водных растворах аминокислот при действии слабых электромагнитных полей. Подходы к экспериментальнотеоретическому анализу // Биофизика. 1996. Т.41, В.5. С.973-978.
- 3. V.V. Novikov, A.V. Karnaukhov. Mechanism of action of weak electromagnetic field on ionic currents in aqueous solutions of amino acids // Bioelectromagnetics. 1997. V.18. P.25-27.
- 4. M.N. Zhadin, V.V. Novikov, F.S. Barnes, N.F. Pergola. Combined action of static and alternating magnetic fields on ionic current in aqueus glutamic acid solution // Bioelectromagnetics. 1998. V.19. P.41-45.

Повторение и дальнейшее развитие исследований:

- 1. E. Del Giudice, M. Fleischmann, G. Preparata, and G. Talpo, Bioelectromagnetics 23, 522-530 (2002).
- 2. N. Comisso, E. Del Giudice, A. De Ninno et al., Bioelectromagnetics 27, 16-25 (2006).
- D. Alberto, L. Busso, R. Garfagnini et al., Electromagnetic Biology and Medicine 27 (3), 241-253 (2008).
- 4. A. Pazur, Biomagnetic. Res. Technol. 2, 8 (2004).
- 5. L. Giuliani, S. Grimaldi, A. Lisi et al. Biomagnetic. Res. Technol. 6, 1 (2008).

Экспериментальное средство (A. Pazur, 2004)

Схематический эскиз устройства для дифференциальной нелинейной диэлектрической спектроскопии (DNLDS) и фотография открытой камерой из пермаллоя с образцом – справа. Два комплекта 4 золотых электродов (E1, E2, 10 мм длины, расстояние между ними 2 мм), каждый расположен в двух смежных кюветах (C) 1х1х4.3 см, позволяя одновременное измерение двух образцов (используемый объем 1 мл каждый) при одинаковых условиях окружающей среды. Кюветы окружены резервуаром (T) для того, чтобы обеспечить защиту атмосферы аргоном.

Увеличение тока в условиях ICR (DC)

Увеличение тока через раствор глутаминовой кислоты/HCl (2.24 мМ, pH = 2.85) вблизи условий ICR. Bdc = 40 мкТл, амплитуда переменного поля Bac - 50 нТл, частотное разрешение Δf = 0.05 Гц. Постоянное напряжение на электродах 80 милливольт.

Увеличение тока в условиях ICR (AC)

Представление 2х гармоник спектров NLDS, взятых для каждой сканируемой частоты Вас. Данные были отнесены к референтым сканам с Bdc = 40 µT, но без Вас. Серые полосы метки указывают стандартные отклонения.

Спектры NLDS в условиях ионного циклотронного резонанса (ICR)

Трехмерное представление данных NLDS. Раствор глутаминовой кислоты/HCl (2.24 мМ, pH 2.85) во время ICR (Bdc=40 мкТл, переменное поле Bac=50 nT, fBAC = 4.14 Гц). Шаг 0.05 Гц.

Данные DNLDS

Voltammograms для некоторых гармоник DNLDS (синусоидальная волна 2 Гц с переменной амплитудой 100- 1100 mV) раствора глутаминовой кислоты/HCl (2.24 mM, pH 2.85) в условиями ICR (Bdc= 40 мкТл, Bac = 50 нТл, 4.14 Гц).

Примеры некоторых ICR сигналов (AC)

- 1: Лецитин липосомы (0.5% w/w, 10 mM Tris/HCl, pH 7.5, 20°C)
- 2: Глутамат (0.2 g/L HCl, pH=2.85, 20°C)
- 3: Глицин (0.2 g/L HCl, pH=2.7, 20°C)

Теоретические подходы:

- 1. Карнаухов А.В. (1996) Диссипативные структуры, диссипативный резонанс.
- 2. Жадин М.Н. (1998) Микрокристаллы в растворе.
- 3. E. Del Giudice, G. Preparata et al. (2002) QED теория ICR.

Профиль элюции при HPLC эквимолярных растворов Asp, Glu, Arg, Lys после часовой экспозиции в слабом электромагнитном поле

Условия ICR для АК (Во = 40 мкТл; В1 = 0,1 мкТл (f 3,51; 4,17; 4,20; 4,65 Гц). U = 45 мВ. а: исходный раствор; б: раствор в кювете без МП; с, д: растворы после экспозиции МП.

Профиль элюции при HPLC ангиотензина 1 (30 мкг/мл) после воздействия слабых МП (ПМП=42 мкТл; ПеМП=0,05 мкТл, частоты 3,5-5,0 Гц; экспозиция 12 часов)

- а исходный пептид.
- б контрольная проба при 12 часовой экспозиции.
- в опытная проба

1, 2, 3, 4 - выход фрагментов гидролиза: 1 – DRV; 2 – FHL: 3 – DRVYI; 4 -HPFHL Гидролиз ангиотензина 1 (30 мкг/мл) при действии слабых МП в присутствии различных химических добавок (n=5). Экспозиция в МП-12 часов

- 1. Спонтанный гидролиз.
- 2. Индуцированный МП гидролиз.
- 3. Гидролиз в обработанной МП воде (экспозиция пептида 12 часов).
- 4. Индуцированный МП гидролиз в присутствии каталазы (10 мкг/мл).

5. Индуцированный МП гидролиз в присутствии пероксидазы хрена и ABTS (по 10 мкг/мл).

6. Индуцированный МП гидролиз в присутствии БСА (10 мкг/мл).

7. Индуцированный МП гидролиз в присутствии ингибиторов протеаз.

Эффекты биологического действия слабых и сверхслабых

магнитных полей

ПМП	ПеМП		
Индукция (мкТл)	Индукция (нТл)	Частота (Гц)	Биологический эффект
42	1; 40; 100; 120; 160: 640	1; 3,7; 32	Активация деления планарий Dugesia Tigrina
<0,1	-	-	Активация деления планарий Dugesia Tigrina
30-49	40-200	3,5-5,0 (сумма частот); 4,38 и 4,88 1; 4,4; 16,5	Торможение развития АКЭ у животных-опухоленосителей.
40	40	3,5-5,0	Снижение устойчивости ДНК хроматина клеток АКЭ и мозга мышей к ДНКазе I
40	40	3,5-5,0	Снижение функциональной активности гистоновых белков, защищающих ДНК от действия ДНКазы І
40	40	3,5-5,0	Снижение активности рекомбинантных обратных транскриптаз вируса саркомы Рауса и вируса иммунодефицита человека (HIV-1)
42	50-100	3,5-5,0	Стимуляция гидролиза амилоидного протеина и уменьшение числа амилоидных бляшек

Противоопухолевое действие слабых МП (ПМП 42 мкТл; ПеМП частота 4,4 Гц, соответствует иону глутаминовой кислоты)

Цитологический анализ

Контроль

Опыт

Выводы

- Найдены комбинации параметров магнитных полей, вызывающих резонансноподобный отклик проводимости водных растворов ряда аминокислот. Формальным условием является равенство частоты переменной компоненты поля частоте циклотронного резонанса ионной формы аминокислоты при B_s в диапазоне 20 - 100 мкТл и соотношении величин B_s/B_a ~ 500-1000.
- Аминокислоты в вышеописанных условиях более активно вступают в реакцию поликонденсации с образованием пептидных молекул. Протеины же, напротив, более активно гидролизуются с образованием коротких пептидных фрагментов.
- 3. Показано, что воздействие МП, с определенными нами параметрами, обладает чрезвычайно высокой биологической активностью: влияет на интенсивность деления планарий; подавляет или тормозит развитие злокачественных новообразований у мышей; приводит к ослаблению белковой защиты молекул ДНК к действию ДНКазы 1; снижает функциональную активность ряда ферментов нуклеинового обмена и содержание амилоидного протеина и амилоидных бляшек в коре и гиппокампе животных-моделей болезни Альцгеймера.

Литература

- 1. В.В. Новиков и М.Н. Жадин, Биофизика 39 (1), 45-49 (1994).
- 2. В.В. Новиков, Биофизика 39 (5), 825-830 (1994).
- 3. В.В. Новиков, Биофизика 41 (5), 973-978 (1996).
- 4. M.N. Zhadin, V.V. Novikov, F.S. Barnes, and N. F. Pergola, Bioelectromagnetics 19, 41-45 (1998).
- 5. В.В. Новиков, Е.Е. Фесенко, Биофизика 46 (2), 235-241 (2001).
- 6. E. Del Giudice, M. Fleischmann, G. Preparata, and G. Talpo, Bioelectromagnetics 23, 522-530 (2002).
- 7. N. Comisso, E. Del Giudice, A. De Ninno et al., Bioelectromagnetics 27, 16-25 (2006).
- 8. D. Alberto, L. Busso, R. Garfagnini et al., Electromagnetic Biology and Medicine 27 (3), 241-253 (2008).
- 9. A. Pazur, Biomagnetic. Res. Technol. 2, 8 (2004).
- 10. V.V. Novikov, I.M. Sheiman, E.E. Fesenko, Bioelectromagnetics 29, 387-393 (2008).
- 11. V.V. Novikov, I.M. Sheiman, E.E. Fesenko, Bioelectromagnetics 30, 343-351 (2009).

The Ion Cyclotron Resonance (ICR): Basics

The movement of a charged particle q with the speed v in a magnetic field B results in a force F, which is perpendicular to B and v in an rectangular frame of reference. We get the vector product:

$$\mathbf{F} = Q \cdot \mathbf{v} \otimes \mathbf{B} \quad (1)$$

This *Lorentz* force urges the particles with mass *m* onto a orbit with radius *r* in a plane perpendicular to *B*. $r = \frac{m \cdot \mathbf{v}}{q \cdot \mathbf{B}}$

It is called *"Lamour* precission" and leads after solving to the orbit frequency of the generic *"Ion Cyclotron Resonance Formula"*:

(2)

$$f = \frac{q \cdot \mathbf{B}}{m \cdot 2\pi} \qquad (3)$$

Wheras *f* denotes the idealized *Lamour* precission frequency of the Ion in the vacuum (not respective to any interaction with it's environment).

The Ion Cyclotron Resonance (ICR): Coherence

Why can Ions under certain conditions move in water like in the vacuum without thermic interactions (kT Paradox)? Or: water has $\varepsilon_r \sim 80$, isn't it?

The prediction of the two-fluid property of water (Landau 1947):
At room temperature ~40% of the bulk water form domains of molecules coherent oscillating between two inner electron configurations with △E=12 eV

after applying a EMF \Rightarrow **coherent regions** will establish.

Properties of the water's coherent phase regions (~40% at 293 K):

- size about 1000 Å (100 nm) respective to 12 eV.
- high polarizability ($\varepsilon_r \sim 160$)
- unaccessible for moving ions, Exception the very small H⁺
- Decoupled against thermic environment by an energy gap of 0.26 eV
- No participation on electrolyte conductivity (Ohm's portion)

Properties of the water's non coherent (bulk) phase (~60% at 293 K):

- thermic energy (kT) dominating
- low polarizability ($\varepsilon_r \sim 15$)
- accessible for all ions
- Entire contribution for electrolyte conductivity (Ohm's portion)

The Ion Cyclotron Resonance (ICR): Quantum state coupling

After applying an magnetic field \mathbf{B}_0 , the lons beginn to move in orbits an perpendicular orientated plane. Orbits matching the size of the coherent water with their radius $r_{\rm ed}$ domains and including them get stable (*Giudice et. al. 2002*).

Their Wavefunktion ψ matches the *Schrödinger*equation for a coupled harmonic oszillator:

$$\Delta \Psi + \frac{2m}{\overline{h}} (W + \frac{q \cdot \mathbf{B}_0 \cdot h}{m \cdot 2\pi}) \Psi = 0 \qquad (4)$$

Where $W = \mathbf{B}_0 \times \gamma$ is the total Energy of the coherent domain with it's Magneton γ . The Ion then has the probability of residence

$$|\Psi|^2 \cdot \mathrm{d}V = 1 \qquad (5)$$

for the coherent domain, while it is moving in the domain's frontier δ :

- Interface between coherent and incoherent regions
- thickness of about 2-4 nm
- stabilizes the ICR orbit, total-reflexion to the outer incoherent region.
- No ,,collision" of ions, because coherence requires constant phases.

The Ion Cyclotron Resonance (ICR): Energy exchange

Applying only a static magnetic field B_0 still provides no energy exchange.

- It must leave the coherent aera
- In the incoherent environment it is withdrawn by an external electric field E.

Behavior of ionic electrolytic current as a function of time for a solution of glutamic acid at pH 2.85, at 100 mV, and in the absence of magnetic fields.

In the inserts are reported four typical behaviors of ionic electrolytic current as a function of time and of the corresponding frequency, for a solution of glutamic acid at pH 2.85. The solution is placed in a static magnetic field flux density of 40 mcT and a variable alternating magnetic field flux density of 40 nT. The peaks appear near the cyclotron resonance frequency (D. Alberto et al., 2008).

Figure 2

The usual resonance curve. Cell with gold electrodes and polarization 80 mV, Temperature : 22°C, L- glutamic acid 38 mg/ml, pH 2.89, B: 40 μ T, B_o : 40 nT, Sweep time: 100 sec, Total data current recorded :100 sec, Initial current: – 60 nA, Final current : – 10 nA, Scan rate :100 point/sec, Peak resonance frequency 3.966 Hz. The resonance peak with maximum near the cyclotron frequency of about 4.0 Hz. The abscissa: the scanning of frequency of alternating magnetic field. The ordinate: the current through the amino acid aqueous solution.

Figure 5

The resonance curve in the experiment with electrodes outside the cell. Cell with external electrodes and polarization 80 mV. Temperature : 22°C, L- glutamic acid 38 mg/ml, pH 2.89. B: 40 μ T, B_o : 40 nT, Sweep time: 100 sec, Total data current recorded :100 sec, Scan rate :100 point/ sec, Peak resonance frequency 4,119 Hz. The resonance peak with maximum near the cyclotron frequency of about 4.0 Hz. The abscissa: the scanning of frequency of alternating magnetic field. The ordinate: the current in the coil detector.