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Abstract

We made liquid phase  measurements of water isotopomers and found

dissimilar ortho/para ratio between 17
2  and 16

2 . Results indicate lower abun-

dance of para-coupled 11 spins in 17
2  relative to 16

2 . We propose that this

difference can be used to study the behavior of 17
2  during the chiral hydration

of amino acids.

1 Introduction

Mechanisms and effects explored for explaining subtle differences between amino acid

enantiomers include: ring currents [1][2][3]; neutral currents in weak interactions [3]; sol-

ubility [4][5]; magnetic properties of crystals [6]; crystallization of  −  complexes

[7]; ortho/para ratio () [9]; chemical reactivity [8] and charge distribution in chiral

centers in magnetic fields () [10]. Recent evidence indicated that dissimilar hydration

complexes occur between enantiomers and water isotopomers, namely 16
2  and 17

2 

[11][12][13]. This chirality may start from small differences in mirror symmetry regarding

electro-magnetic organization between enantiocenters, but may also be controlled by dif-

ferences in the abundance of different nuclear 11 spin pair types (e.g. ortho vs. para)

between water isotopomers. The relative abundance of ortho and para in 17
2  should

be affected by the 17 nucleus (a  system of nuclear spins constructs with one large

quadrupole (17), but this  partition of 17
2  is unknown and hard to predict. We

analyzed differences in  between 16
2  and 17

2 .

The nuclear 11 spin pair of water exists in ortho coupling (three states with total

spin  = 1) or para coupling ( = 0). The abbreviation spinomers was proposed for

spin-isomers [14]. Ortho and para nuclear spinomers confer molecules dissimilar physical-

chemical properties [15]. At ≥ 50  is ˜3 : 1 [16]. The kinetics of  equilibration

is rapid [17]. Controllers of s magnitude and of the ortho/para ( ) transition rate

include temperature, electric and magnetic fields and neighboring nuclear spins [18][19].

Most commonly discussed mechanisms of  transition are: spin conversion caused by
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magnetic interaction of 1 spins with paramagnetic centers; spin conversion catalyzed by

pressure; and spin conversion due to a  chemical exchange [20]. In free water molecules

 interconversion is forbidden or very slow, and if occurring is driven by weak nuclear

spin/rotation interaction [21]. In 16
2  the energy difference between ortho and para

is derived from the magnetic coupling constant averaged out by the spin exchange [22].

Thus, enrichment of pure16
2  in ortho or para without coercing agents is seen by some as

impossible [17][22]. In non-homogeneous  nuclear spins are out of phase and this speeds

up  transitions. Single paramagnetic ions are sufficiently strong to change the ;

[20][23]; notably, 17 is paramagnetic and has a large nuclear quadrupole (0.26 barns)[24].

All above conditions affecting  involve alterations in the symmetry of electron shells,

proton spin functions, spatial position of nuclei and rotational Hamiltonian. Thus, 

transitions are induced by a dipole-moment component through the deformation of the

electron shell [25]. As the electron shell of the 17
2  molecule is deformed by the large

quadrupolar asymmetric charge distribution of the 170s nucleus, this asymmetry favors
changes in  and makes  transitions faster. Through spin-spin interactions the

spinomer state of 17
2  is expected to be different and more complex than 16

2 .

Time Domain 1 ( −1 ) in asparagine and alanine revealed chiral-

dissimilarity in proton exchange regarding parameters such as rate constant and intrinsic

spin-spin relaxation time [12]. Because these differences were well correlated with changes

in the concentration of17
2  ([17

2 ]) we proposed that this effect involves (among others)

alterations of  in 17
2  [12]. In these paper we investigate the possibility to estimate

 in water isotopomers.

2 Materials and Methods

17-rich water is not available commercially in high concentrations without increased

[18
2 ] as well. To find which isotope (17 or 18) is the most important in controlling

the abundance of para we used water with different 17/18 isotopic signatures. 16
2 

with 588 17
2  and 0555 18

2  was obtained from Cambridge Isotopes (USA). The

pH of all samples was 7±01.All water samples were stored and read at room temperature.

3 Results

Gas  spectra for water isotopomers were obtained from HITRAN2008 (http://

www.cfa.Harvard.edu /HITRAN/HITRAN2008/) and liquid absorption measurements

were made on 16
2  (~19 mM 17

2 ) and 16
2  with 588 17

2  and 0555 18
2 

in the 400− 4000−1 using a Thermo Electron Nicolete  spectrometer, using 182
and 364 replicate readings.

Earlier analysis in water included calculating:  in 16
2 , effects of ortho and

para states on rotational-level energies of the water molecule, spectral predictions and

direct spectral observations in  and far  [26][27][28][16][29]. Since exact calculations

of absorption line amplitudes in the spectrum of water is a very complex problem, earlier

workers preferred verifying whether measurements conform to trends shown by theoretical

predictions, or were in agreement with other measurements [29]. The abundance of ortho

and para, do however change the ratio between different IR absorption peaks, though

this relationship is complex. We recorded and compared the  spectra for 16
2  water

with 19 mM 17
2  and 16

2  with 588 17
2 . Earlier  works revealed the most
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important diagnostic 2 vibrational bands for discriminating ortho and para [26][29]. We

analyzed the ro-vibrational bands from the 1660− 1671−1 domain.
Earlier work showed that changes in absorption of the different  bands are influenced

by changes in the abundance of ortho and para. We obtained  peaks and their corre-

sponding absorption intensities from 08 in the 0− 25233−1 range for 16
2 

and in the 10 − 14437−1 range for H217O. We identified transitions between energy
levels, each representing a specific combination of quantum states   1 2 and 3.

We identified bands corresponding to ortho and para using the rule  =  + + 3,

which is even for para states and odd for ortho states [30].  values were compared

between 16
2  and 17

2  individually (i.e. one pair at a time) and collectively (i.e. all

pairs within a wave number range).

For individual analysis we used pairs of ortho=ortho and para=para transitions,

some reported earlier, some identified during the study(see below):

The transition pairs we have used are:

3 0 3→ 3 1 2 (ortho) vs. 2 0 2 = 2 1 1 (para) (identified in this study);

3 1 2→ 3 2 1 (ortho) vs. 2 1 1→ 2 2 0 (para) (identified in this study);

2 1 2→ 3 0 3 (ortho) vs. 1 1 1→ 2 0 2 (para) ([31]);

7 1 7→ 6 1 6 (ortho) vs. 7 0 7→ 6 0 6 (para) ([32]);

3 1 2→ 3 0 3 (ortho) vs. 1 1 1→ 0 0 0 ([16]).

For each pair we have analyzed all energy levels (i.e combinations of   and

1 2 3. A total of 28 rations were calculated.

In the case of mid  spectra obtained by direct observation we fit the experimental

spectra with PeakFit 4.12 software. Because the ratio between these peak areas is not

directly proportional with the , but the direction of change is, we calculated the ratio

between the o:peak area and p:peak area and compared 16
2  with 17

2 . We predicted

that we will find larger values for this ratio in 17-enriched water. Results confirmed that

the ratio between the 16628−1 o-band and the 16694−1 p-band was 0.63 in 16
2 

and 0.71 in 10.6 % 17
2  (see Figure 1 and Figure 2).

The collective analysis of all bands from 08 in the 226−24 991 −1 range
revealed only slightly larger  in16

2  (16) (2.999058) relative to
17
2  (17)

(3.001396). In the 010−000 band (corresponding with the range 7000−2 800−1)16
= 2984686 and 17 = 2999376.  differences between gas and condensed phases

make it difficult to extrapolate from  results to the liquid state  results.

The resolution of liquid phase  is less than the resolution in gas phase ,

making some peaks hard to resolve and collective analysis of  almost impossible

in liquid state. Tikhonov and Volkov (2002)[16] monitored changes in 16 in the

36−38−1 range (gas phase), but did not measure17 as well. We made direct 
measurements (400−4 000−1) in liquid phase of16

2  with 5.88M17
2  and compared

with 16
2 . Most 17

2  peaks cannot be discriminated from 16
2  peaks. For gas/liquid

17
2  comparisons we used the transition (010)432− (000)321 for ortho (1788027−1)

corresponding with (010)331 − (000)220 for para (1766728−1). 08 gave

16 = 2024 and 17 = 2019, while the 17 in liquid phase was ˜27 (see

Figure 2). The overall 17 in liquid phase could not be determined due to overlap of

16
2  and 17

2  peaks.
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Figure 1: Spectrum fragment in the region of the 2 vibrational band used in this work

to compare the ratio between water ortho and para isomer concentrations for (A) 16
2 .

The area of peak is labelled on the top of peak. Strong absorption lines in the spectra of

the ortho (o) and para (p) isomers are labeled by letters.

Figure 2: Spectrum fragment in the region of the 2 vibrational band used in this work

to compare the ratio between water ortho and para isomer concentrations for (B) 10%

17
2 . The area of peak is labelled on the top of peak. Strong absorption lines in the

spectra of the ortho (o) and para (p) isomers are labeled by letters.
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Figure 3: Spectrum fragment in the region of the 2 vibrational band used in this work

to compare the ratio between water ortho and para isomer concentrations for constructed

spectrum from Hitran database for16
2  and17

2  (A) and FTIR experimental spectrum

10% 17
2  (B).
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4 Discussions and conclusions

The simplest interpretation of our results is that there are less para and more “uncoupled”
11 nuclear spin pairs in 17

2  than in 16
2 . In fact, the 17 isotope leads to more

complex 3− nuclear spinomers and thus the & states of 17
2  are not similar

to the & states of 16
2 . In water at 7 the abundance of truly uncoupled spins

(i.e. coming from − and 3
+) is very low (˜2 · 10−7) and not enough to influence

the interpretation of these results.

We propose that the ortho:para differences between 16
2  and 17

2  are due to the

specific properties of the 17 nucleus, namely its electric quadrupole and magnetic mo-

ment. It was already shown that vicinity with paramagnetic compounds influences the

 in 2 [33]. Also, interaction with an external electrical field (with time dependent

fluctuation) such as strog laser pulses leads to perturbations of the rotational states of

water isomers [34].

These results have important implications for understanding interactions between nu-

clear spin isomers. Some chemical interactions are known to be  :  discriminant.

Para-water binds surfaces faster possibly because (unlike ortho) the para state can reach

the zero-point rotational energy [35][25]. Also, the electromagnetic interaction between

the magnetic moment of a pair of coupled spins and the magnetic moment of a chiral

molecule are thought to have higher probability if spins are in ortho state [36]. If dis-

similar  exists between enantiomers and between 16
2  and 17

2 , then hydration

complexes should be both isotopic- and chiral-dissimilar. This may explain L:D-

differences found earlier in amino acids [9][8]. Because of L:D dissimilar electro-magnetic

organization and dissimilar para abundance in 16
2  vs. 17

2  hydration of enantiomers

is mirror asymmetric. Thus, enantio-differences reported earlier during tyrosine crys-

tallization may be attributed to L- vs. D- asymmetry[4][5], but also to 16
2 -

17
2 -11 pair coupling asymmetry. We did not discusse here the involvement of other

water isotopomers such as 2 and , 18
2  and combinations of them. The mass

spectrometry analysis bulletin of the 17-enriched waters we have used did not reveal

increased concentration of 2 or .

Variations in the abundance of the nuclear spinomers ( 17
2  and 16

2 ) have impor-

tant implications for understanding the role of nuclear spin states of water in chemical

and biochemical interactions.

The following interpretation of earlier findings is proposed. Dissimilar electro-magnetic

organization exists between L- and D-enantiocenters [12]. It starts from the contraction

of the ∗ −  bond in the chiral center of amino acids generating an electron flow di-

rected preferentially toward the nitrogen [37]. The Neutral Ring Current () thus

established is not identical vis a vis electro-magnetic organization (i.e. direction relative

to a given state of the molecule and relative to a moment in time). The ∗ −  ex-

tension results in clockwise  in one enantiomer, while counterclockwise in the other

[37]. When this effect is coupled with the magnetization of 17 and 16 6= 17
chiral-asymmetric hydration of amino acids occurs with different water spinomers. This

asymmetry is observed as dissimilar proton exchange during −1 because the

is a direct consequence of  dissimilarity between the water O-isotopomers [38]; we

expected this effect to apply for 17
2  as well. Our results introduces a new mechanism

(namely 16 6= 17) that may be used to help explain differences in hydration

between amino acid enantiomers seen earlier by isothermal titration calorimetry [39].
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