ИЗМЕНЕНИЕ ПОКАЗАТЕЛЕЙ НОЦИЦЕПТИВНОГО ФЛЕКСОРНОГО РЕФЛЕКСА ПОД ВЛИЯНИЕМ НИЗКОИНТЕНСИВНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ КРАЙНЕ ВЫСОКОЙ ЧАСТОТЫ

Джелдубаева Э.Р., Чуян Е.Н., Заячникова Т.В.

Таврический национальный университет им. В.И. Вернадского, 95007, Украина, Симферополь, пр. академика Вернадского, 4, **E-mail**: delviza@mail.ru

Количественная оценка болевой чувствительности относится к интегративным показателям, отражающим общее состояние организма и его реакцию на физиологические или психоэмоциональные нагрузки, поэтому измерение порогов боли является весьма полезным методом в комплексном обследовании людей. Одним из таких объективных методов является ноцицептивный флексорный рефлекс (НФР) [1, 2]. В наших предыдущих исследованиях показан выраженный антиноцицептивный эффект низкоинтенсивного электромагнитного излучения (ЭМИ) крайне высокой частоты (КВЧ) (длина волны – 7,1 мм, плотность потока мощности 0,1 мВт/см²) у крыс на моделях тонической висцеральной и острой болевой реакций [3]. Имеются также клинические данные о снижении болевой реакции под влиянием этого фактора, однако до настоящего времени экспериментальные исследования данного эффекта на людях не проводилось, что и явилось целью данного исследования.

Эксперименты проведены на 20 студентах-волонтерах в возрасте 19-20 лет. Регистрация НФР осуществлялась с верхних конечностей [4]. Регистрирующие электроды располагали: катод на брюшке *m.extensor carpi radialis*, анод - на сухожилии этой мышцы. Заземляющий электрод находится на середине между стимулирующими и регистрирующими электродами. Электрокожное раздражение проводили 1-ой и 2-ой фаланг большого пальца руки одиночными электрическими импульсами, длительностью 0,2 мс и частотой стимуляции 0,5-0,3 Гц.

Исследования проводили на оборудовании «Нейрон-Спектр-6» (фирма "НейроСофт", Россия, г. Иваново) с использованием компьютерного электронейромиографа "Нейро-МВП-4". Фиксировали порог боли (Пб), т.е. величину электрического стимула, при котором испытуемый впервые указывал на появление локализованной острой боли в области расположения стимулирующих электродов. При появлении мышечного ответа фиксировали порог НФР, для анализа которого были рассмотрены латентности двух его последовательных компонента: R2 и R3.

Воздействие ЭМИ КВЧ осуществляли с помощью терапевтического генератора «КВЧ. РАМЕД-ЭКСПЕРТ – 01», экспозиция – 30 минут, локализация – область биологически активной точки МС4 правой руки однократно.

Для определения статистической значимости наблюдавшихся различий использовали непараметрический критерий Вилкоксона.

Как показали результаты исследования, болевой порог у исследуемых в норме до КВЧ-воздействия составлял 5ч11 мс, латентности R2 и R3 $H\Phi P$ верхних конечностей - $6,90\pm0,72$ мс и $13,00\pm1,46$ мс соответственно, что согласуется с литературными данными.

После воздействия низкоинтенсивного ЭМИ КВЧ зарегистрировано существенное повышение данных показателей. Так, болевой порог повысился в среднем в 2,27 раз (p<0,005) и составил 10 ч 29 мс. Отмечалось также повышение и латентность R2 и R3 НФР на 36,81% (p<0,005) и 24,93% (p<0,005).

Из литературных данных известно, что повышение болевого порога и латентности компонентов НФР указывает на снижение активности ноцицептивной системы или усилении активности антиноцицептивной системы организма [5]. Таким образом, результаты данного исследования свидетельствуют об антиноцицептивном влиянии низкоинтенсивного ЭМИ КВЧ.

THE CHANGE OF THE CHARACTERISTICS OF THE NOCICEPTIVE FLEXION REFLEX UNDER INFLUENCE OF LOW-INTENSITY ELECTROMAGNETIC RADIATION OF EXTREMELY HIGH-FREQUENCY Dzheldubaeva E.R., Chuayn E.N., Zayachnikova T.V.

Taurida National V.I. Vernadsky University, Simferopol, Ukraine, e-mail: delviza@mail.ru

Литература

- 1. Willer J.C. Nociceptive flexion reflexes as a tool for pain research in man // Adv. Neurol., 1983, Vol. 39, p. 809–827.
- 2. Данилов А.Б., Данилов Ал. Б., Вейн А.М. Ноцицептивный флексорный рефлекс: метод изучения церебральных механизмов боли (обзор) // Журн. невропат. и психиатр. им. С.С.Корсакова, 1996, № 1, с. 107–112.
- 3. Чуян Е.Н., Джелдубаева Э.Р. Механизмы антиноцицептивного действия низкоинтенсивного миллиметрового излучения: монография. Симферополь: "ДИАЙПИ", 2006. 456 с.
- 4. Гнездилов А.В., Сыровегин А.В., Плаксин С.Е. // Тезисы Российской научно -практической конференции «Организация медицинской помощи больным с болевыми синдромами", Новосибирск, 1997, с. 45.
- 5. Джелдубаева Э.Р., Чуян Е.Н. Особенности исследования ноцицептивого флексорного рефлекса в оценке болевой чувствительности (обзор литературы) // Ученые записки Таврического национального университета им. В. И. Вернадского. Серия «Биология, химия», Том 24 (63). 2011. № 4. С. 57-66.