ИССЛЕДОВАНИЕ ПРОТИВОВИРУСНОГО ДЕЙСТВИЯ НА РАСТЕНИЯ БИОРЕГУЛЯТОРОВ, ВЫДЕЛЕННЫХ ИЗ СЫВОРОТКИ КРОВИ И ТИМУСА МЛЕКОПИТАЮЩИХ

Д.В.Маргасюк, В.Г.Джавахия¹, Д.В.Шумилина¹, Е.Ю.Рыбакова², В.П.Ямскова², И.А.Ямсков

Учреждение Российской академии наук Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, 119991, Москва, Вавилова, 28

¹Центральный Научно-исследовательский институт фитопатологии, Московская обл. ²Учреждение Российской Академии наук Институт биологии развития им. Н.К. Кольцова РАН, Москва E-mail: margasyuk@mail.ru

Ранее из различных тканей млекопитающих были выделены биорегуляторы (БР), проявляющие биологическую активность в сверхмалых дозах (Ямскова и др., 1977; Ямскова, Резникова, 1991). Детекцию белка и определение биологически активной концентрации проводили методом биотестирования, который был разработан для идентификации РБ данной группы (Ямскова и др., 1977). Они представляют собой межмолекулярные комплексы, состоящие из молекул пептида, белков, модулирующих их свойства, и ионов кальция. Выделение проводили по оригинальной методике, включающей экстрагирование, высаливание в насыщенном растворе сернокислого аммония с последующим разделением супернатанта методом ионообменной хроматографии на ДЭАЭ-целлюлозе. Выделенные БР характеризуются рядом физико-химических позволяющих отнести данные соединения к отдельной группе – устойчивость к действию высоких и низких температур, действию хелатирующих агентов и деионизированной воды (Ямсков и др., 1999), преобладание во вторичной структуре β-структур и статистического клубка, образование в водных растворах в виде наноразмерных агрегатов размерами 50-150 нм (Margasyuk et al., 2007, Yamskova et al., 2007). Биологическое действие БР проявляют в сверхмалых дозах, соответствующих $10^{-8} - 10^{-12}$ мг/мл, причем при их действии на ткани животных показано наличие тканевой, но отсутствие видовой специфичности (Ямскова, Резникова, 1991; Краснов и др., 2003), а само воздействие осуществляется на поврежденные ткани в условиях сохранения целостности межклеточного пространства. Это дало возможность оценивать роль БР как регуляторов органно-тканевого гомеостаза, воздействующих на микроокружение клетки (Ямсков, Ямскова, 1999). Исследование воздействия БР животного происхождения на ткани растений ранее не проводили.

В рамках комплексного исследования неспецифической биологической активности этих соединений на базе ЦНИИ фитопатологии проведены эксперименты по оценки противовирусной активности БР. В 1-й день эксперимента листья табака опрысканы с нижней стороны 200 мкл растворами БР, выделенными из сыворотки крови быка (серия 1; концентрация 10^{-12} мг/мл раствора) и тимуса (серия 2; концентрация 10^{-11} мг/мл раствора), а также их смесью в соотношении 1:1 (серия 3); в качестве контроля использовали воду. На 2-й день листья инокулировали суспензией листьев табака, зараженного вирусом табачной мозаики (ВТМ) (по 60 мкл разведенного в 1000 раз сока), на 5-й день проводили учет образовавшихся некрозов. В контрольной серии их число составило 378,40±148,2, в серии 1 - 134,4±67,6, в серии 2 - 249±97,25, в серии 3 – 151,4±92,5. Достоверные различия (р<0,05) в сравнении с контролем выявлены в 1 и 3 опытных сериях, причем средние значения отличались от такового в контрольной серии более, чем вдвое.

Проведенные эксперименты демонстрируют действие БР животного происхождения на растительные ткани и показывают возможность применения этих соединений в СМД в качестве эффективного противовирусного препарата, в том числе, на сельскохозяйственных культурах.

STUDY OF ANTIVIRAL ACTIVITYOF BIOREGULATORS FROM MAMMALIAN SERUM AND THYMUS ON PLANTS

D.V.Margasyuk, V.G.Dzhavakhiya, D.V.Shumilina, E.Yu.Rybakova, V.P.Yamskova, I.A.Yamskov

A.N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991, Moscow, Vavilova, 28;

¹Russian Research Institute of Phytopathology;

²N.K. Koltzov Institute of Developmental Biology RAS, Moscow

Bioregulators extracted from mammalian serum and thymus at ultra low doses decrease a necrosis number on tobacco leaves after inoculation by tobacco mosaic virus.