Адрес этой статьи в интернете: www.biophys.ru/archive/congress2006/abs-p42.pdf

ИЗУЧЕНИЕ СТРУКТУРНОЙ ТРАНСФОРМАЦИИ В ВОДНЫХ ОБЪЕКТАХ ПОСЛЕ НИЗКОИНТЕНСИВНЫХ ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ ИНДУКТИВНЫМ ДИЭЛЕКТРИЧЕСКИМ МЕТОДОМ.

Семихина Л.П.

Россия, Тюменский государственный университет, E-mail: semihina@mail.ru

Корректное изучение эффектов низкоинтенсивных физических воздействий на водные объекты возможно лишь при условии, что в момент регистрации этих эффектов по тому или иному физическому параметру эти объекты не подвергаются дополнительному воздействию. Примером экспериментального метода, удовлетворяющего данному условию, является индуктивный диэлектрический метод (L-метод), в котором исследуемый объект помещается в соленоидальные измерительные L-ячейки. Оценка состояния водного объекта этим методом проводится по частоте ν_{max} , на которой в диапазоне частот 10к Γ ц – 20М Γ ц выявляется максимум тангенса угла его диэлектрических потерь (tg δ). Чем выше частота ν_{max} раствора, тем сильнее искажена в нем «льдоподобная» тетраэдральная сетка водородных связей [1].

Установлено, что даже очень слабыми физическими воздействиями можно существенно расширить или сузить температурный диапазон существования любого состояния воды. Например, свойственный «льдоподобному» состоянию бидистиллированной воды экстремум $tg\delta$ на частоте $v(I)=20\pm5\kappa\Gamma$ ц, исчезающий в исходной воде при $T>40^{\circ}$ C, после воздействия слабых электромагнитных полей радиочастот может наблюдаться вплоть до 90° C, а в случае CBЧ-частот отсутствовать даже при 0° C – рис. 1 (A).

Рис. 1. Частотные зависимости $tg\delta$: А - бидистиллированной воды при $T=0^{\circ}C$ (1-3) и $70^{\circ}C$ (1'-3') до (1, 1') и после воздействия электромагнитных полей радиочастот (2,2') и СВЧ-частот (3,3'); Б – тканей живой лягушки до (1) и после воздействия этих же полей (2-3).

Этим методом выявляется полная аналогия между эффектами влияния электромагнитных полей на водные растворы и биообъекты. Например, согласно рис. 1, воздействие СВЧ- полей увеличивает значения tgδ как воды, так и тканей лягушки на высоких частотах. Проведенные исследования позволили также установить, что в слабых полях L-ячеек не способны переориентироваться не только биомакромолекулы, но и непосредственно связанные с ними молекулы воды. В таком случае рис. 1 (Б) характеризует усредненное по всему биообъекту состояние молекул воды в последующих слоях вблизи биомакромолекул. Обнаруженная неспособность биомакромолекул переориентироваться в слабых электромагнитных полях подтверждает гипотезу, что эффекты слабых физических воздействий на биообъекты преимущественно обусловлены их влиянием на содержащуюся в них воду.

Литература

1. Семихина Л.П. Возможности индуктивного диэлектрического метода для изучения водных растворов. //Научное приборостроение. 2005, том 15, №4. С. 88-93.